

LECOEUR ELECTRONIQUE

19 route de Courtenay - 45220 – CHUELLES – : 02 38 94 28 30– 음 : 02 38 94 29 67 : info@lecoeur-electronique.com

USER'S GUIDE FOR OPEN SYSTEM

Rev 1.15 - Mars 2006 - Copyright Lecoeur Electronique corporation all rights reserved -

OPEN SYSTEM

19 route de Courtenay - 45220 – CHUELLES – 會 : 02 38 94 28 30– 봄 : 02 38 94 29 67 므 : info@lecoeur-electronique.com LECOEUR ELECTRONIQUE

1) Using Standard Interface

2) Excel global set-up file description

3) Hardware presentation

1.1 Setting up the number of sequences

CHANNEL 1	▼ RF ▼ OPEN system	6	-
% 100.0 -	Sampling frequency : 40 MHz		Fcœun
90.0-	selecbrainscanfiles.vi		
80.0-		Display a-s Allows to	CHANNEL cans channel per channel modify US parameters
70.0 -	Nb of seequences to load (Cancel=1)	Imagin	g Tools
60.0-	€ 32 C	Channel	multi a-scan groups
40.0 - 30.0 -	Sampling Frequency	Chanr	al displayed : 1
20.0-			28 26 24 22
			201 18 16 14
			12
autotest Gain De	elay Scale rest 2 22		6 4
0.00 θ 0.00 dB μs	00 2.108		1
F1 F2	F3		
channel ON / OFF	Alternance Averaging Full rectified 1		ELR
F8 Time 📲 1480 m/s Affich	nage std ADC Auxilaries Transmitter Spectrum Zoom Print Config Delete Save Recall	Mass Memory Se	equencer Setup Quit

DESCRIPTION:

Each time the application is loaded the first task is to set up the number of sequences to load. The user can enter a number of sequences or hit 'esc' to skip. In this case only 8 sequences are loaded. The user can also enter the sampling frequency of receivers analogue to digital converters.

FEATURES:

N/A

NOTES: The sampling frequency will be stored in the current set-up file.

19 route de Courtenay - 45220 – CHUELLES – : 02 38 94 28 30– 몸 : 02 38 94 29 67 : info@lecoeur-electronique.com

<u> 1.2 Gain</u>

DESCRIPTION:

This controller allows the user to enter a gain value for the selected channel.

FEATURES:

Range: 0 to 80 dB Step: 0.1 dB Bandwidth: 0.5 MHz to 20 MHz at -6 dB Linearity: -/+ 0.5 dB.

NOTES:

The reported noise to the input of the receiver is 1 nV/ Sqr(Hz). This value is measured in our laboratories; it doesn't include connectors and external cables.

19 route de Courtenay - 45220 – CHUELLES – 會 : 02 38 94 28 30– 봄 : 02 38 94 29 67 므 : info@lecoeur-electronique.com

1.3 Delay

DESCRIPTION:

Allows the user to control the delay of the display. IT IS ONLY FOR VISUALISATION. The delays on receivers or transmitter for beam forming are set up in other menu.

FEATURES:

Unit: μS Range: 0 to 160 μS

NOTES: N.A

19 route de Courtenay - 45220 – CHUELLES – : 02 38 94 28 30– 훕 : 02 38 94 29 67 : info@lecoeur-electronique.com

1.4 Scale

DESCRIPTION:

This function allows to modify the scale for the screen display.

FEATURES:

Unit: μS per division
Range:
-For 80 MHz sampling frequency: 0 to 10 μS/Div. max
-For 40 MHz sampling frequency: 0 to 20 μS/Div. max
-For 20 MHz sampling frequency: 0 to 39 μS/Div. max
-For 10 MHz sampling frequency: 0 to 39 μS/Div. max

NOTES:

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

1.5 Selecting a channel

DESCRIPTION:

The scrolling controller selects the channel to be displayed. The maximum value is the number of hardware channels installed

FEATURES:

- Range maximum: Number of channels installed in OPEN

NOTES:

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

1.6 RF/A-scan

DESCRIPTION:

The menu controls the kind of display High frequency is RF mode, A-scan is rectified mode

FEATURES:

N.A

NOTES:

<u>1.7 Lin/log display</u>

DESCRIPTION:

This controller allows the user to display A-scan in linear or logarithmic mode. 0 dB is the maximum amplitude of echo in the screen.

FEATURES:

0 dB is the maximum amplitude of echo in the screen.

NOTES:

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

<u>1.8 DAC</u>

DESCRIPTION:

This function is a hardware function. When ON is set up, amplifier is controlled by a time variable tension. It is possible to create any kind of curve to compensate attenuation, or to minimise a selected echo or more.

The smoothing option makes an interpolation between the points

FEATURES:

Range: 0 to 80 dB Depth: 160 μS Step: 0.65 μS

NOTES: OPTION: 1 mS depth

19 route de Courtenay - 45220 – CHUELLES – 會 : 02 38 94 28 30– 봄 : 02 38 94 29 67 교 : info@lecoeur-electronique.com

NO SMOOTHING

1.9 Channel On Off

DESCRIPTION:

Controls the state of the current channel (On :the channel is activated, OFF : the channel is switched off)

FEATURES:

N.A

NOTES:

This parameter is only active for OPEN with analog pulsers

1.10 Rectification mode

DESCRIPTION:

In A-scan mode it is possible to display only the negative wave or positive or both.

FEATURES:

N.A

NOTES:

19 route de Courtenay - 45220 – CHUELLES – 會 : 02 38 94 28 30– 음 : 02 38 94 29 67 므 : info@lecoeur-electronique.com

1.11 Report

DESCRIPTION:

This function is a dedicated one. The user can create his own report using Labview tools and can activate it with this button.

FEATURES:

N.A

NOTES:

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

1.12 Averaging

DESCRIPTION:

Averaging makes the arithmetic average of a selected number of A-scan. This number is entered in the controller 'Averring'. This has only effect on the display.

FEATURES:

Range: 1 to 255

NOTES:

OPTION: Hardware averaging 1 to 255, averages signals in real time.

19 route de Courtenay - 45220 – CHUELLES – : 02 38 94 28 30– 몸 : 02 38 94 29 67 : info@lecoeur-electronique.com

1.13 Wizard

DESCRIPTION:

Switching Wizard ON allows the user to increase gain to 100 dB. The averaging function is controlled by the system to reduce automatically electronic noise. The gain between 80 dB and 100 dB is a numerical gain. This function is a software one.

FEATURES:

N.A

NOTES:

OPTION: Hardware averaging 1 to 255, averages signals in real time.

19 route de Courtenay - 45220 – CHUELLES – : 02 38 94 28 30– 훕 : 02 38 94 29 67 : info@lecoeur-electronique.com

<u>1.14 Fir</u>

DESCRIPTION:

The "FIR" is a hardware digital filter which can be set up with the windows "FIR". It is composed with 8 coefficients. The user must take care of entering the right sampling frequency before adjusting.

FEATURES:

Low Pass filter 8 coefficients FIR

NOTES:N.A

1.15 Transmitter

DESCRIPTION:

The Transmitter can be pulsed or analogue. In case of analogue pulser only P.R.F is active.

<u>Voltage:</u> Can be adjusted from 10 Volts to 230 Volts. This parameter controls the voltage of the pulse generated by the pulser and sent to the probe.

Frequency: This parameter sets up the width of the pulse.

<u>This channel / All channels</u>: When the switch is in position "All channel voltage and Frequency are sent to all boards of OPEN providing the same transmitters parameters.

FEATURES:

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– ≞ : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

Tests conditions :

- Single probe selected on the back side of OPEN
- 50 Ohm load (resistive)
- Width measured at 100 Volts CC / at 50 % of amplitude
- Falling time at 100 Volts CC / 10 to 90 % of amplitude

Voltage accuracy

a) Standard transmitters

	Tolérances		
Value	Min	Max	
230 V	225 V	235 V	
200 V	195 V	205 V	
150 V	145 V	155 V	
100 V	95 V	105 V	
50 V	44 V	56 V	
10 V	7 V	14 V	

LECOEUR ELECTRONIQUE

b) High frequency transmitters (OPTION)

	Tolérances		
Value	Min	Max	
230 V	228 V	232 V	
200 V	198 V	202 V	
150 V	148 V	152 V	
100 V	98 V	102 V	
50 V	47 V	53 V	
10 V	8 V	12 V	

Width accuracy

a) Standard transmitters

	Tolérances		
Pulse Width à 100 V $Z=50 \ \Omega$	Min	Max	
15 MHz	26 nS	39 nS	
10 MHz	42 nS	58 nS	
7,5 MHz	60 nS	72 nS	
6 MHz	75 nS	91 nS	
5 MHz	90 nS	110 nS	
4 MHz	108 nS	132 nS	

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

b) High frequency transmitters (OPTION)

	Tolérances		
Width voltage compensated	Min	Max	
15 MHz	30 nS	36 nS	
10 MHz	47 nS	53 nS	
7,5 MHz	62 nS	70 nS	
6 MHz	80 nS	86 nS	
5 MHz	95 nS	105 nS	
4 MHz	120 nS	130 nS	

Falling time

- a) Standard transmitters
 - Typical value: 8 nS
- b) High frequency transmitters (OPTION)
 - Typical value: 4 nS

19 route de Courtenay - 45220 – CHUELLES – : 02 38 94 28 30– 봄 : 02 38 94 29 67 : info@lecoeur-electronique.com LECOEUR ELECTRONIQUE

Pulse shape

a) Standard transmitters

4 MHz excitation / 100 Volts

LECOEUR ELECTRONIQUE

19 route de Courtenay - 45220 – CHUELLES – 會 : 02 38 94 28 30– 몸 : 02 38 94 29 67 므 : info@lecoeur-electronique.com

10 MHz excitation / 100 Volts

19 route de Courtenay - 45220 - CHUELLES

- ☎:02 38 94 28 30- 善:02 38 94 29 67 旦:info@lecoeur-electronique.com
- b) High frequency transmitters (OPTION)

Falling edge / 100 Volts

LECOEUR ELECTRONIQUE

<u>P.R.F (repetition Frequency)</u>: This parameter controls the rate of the pulser. For example setting 1 KHz will generate pulses every millisecond.

- Entering 0.03 KHz switches the system to the "EXTERNAL TRIGGER" mode. In this mode a TTL 5 Volts pulse must be input in the plus called 'EXTERNAL TRIGGER'. The active edge is positive.
- Entering 0.01 KHz switches the system in "SOFT TRIGGER" mode. In this mode the pulser generates pulses only when it is necessary (When a a-scan digitalisation is request). If no request is made on OPEN the pulser is set OFF.

FEATURES:

Range: 0.3 KHz to 20 KHz depending on scale/delay value

NOTES:

1.16 Spectrum

DESCRIPTION:

Displays the spectrum of the current A-SCAN in the screen

FEATURES:

N.A

NOTES:

LECOEUR ELECTRONIQUE

1.17 Zoom

DESCRIPTION:

Provides a larger display of A-SCAN

FEATURES:

N.A

NOTES:

19 route de Courtenay - 45220 – CHUELLES – 會 : 02 38 94 28 30– 禹 : 02 38 94 29 67 묘 : info@lecoeur-electronique.com

1.18 Print

DESCRIPTIONS:

The Print button transfers the current screen to a printer

FEATURES:

N.A

NOTES:

The black colour is changed to white to reduce ink consumption.

19 route de Courtenay - 45220 – CHUELLES – 會 : 02 38 94 28 30– 음 : 02 38 94 29 67 므 : info@lecoeur-electronique.com

1.19 Config.

DESCRIPTION:

This function allows the user to copy all parameters from one channel to another or on all channels. This will also copy the delays for transmitters and receivers beam-former files.

FEATURES:

N.A

NOTES:

19 route de Courtenay - 45220 – CHUELLES – 會 : 02 38 94 28 30– 봄 : 02 38 94 29 67 므 : info@lecoeur-electronique.com

1.20 Delete

SELECT THE FIL	E TO DELETE			22			
Regarder dans :	🚞 ustcad	~	G 🜶 📂 🖽-	<i>em</i>		(Free	un
Mes documents récents					100 - 90 - 80 -	MULTI A-SCA Display multi channe Use for a quick check of	N Is a-scan each element
Bureau Mes documents					70 60 50	Imaging Channel multi a-scar	Tools groups
Poste de travail					40 - 30 - 20 -		
Favoris réseau	Nom du fichier : Fichiers de type :	Filtre personnalisé (*.xls)		OK 9	10 10		
Scale							
autotest					Olibrate		
Gain () 22.3 dB	n Delay 0 ∂ 88.090 µs	Scale 9.681 _{µs/div}	reset	> >> 0 seq n	umber Debug	FULL SCREE	N
F1	F2	F3					
F8 Time 🔻	Affichage	td ADC Auxilaries Tran	smitter Spectrum Zoom	Print Config Delete	Save Recall M	Mass Memory Sequencer	Setup Quit

DESCRIPTION:

Deletes a set-up file previously stored with save function.

FEATURES:

N.A

NOTES:

19 route de Courtenay - 45220 – CHUELLES – : 02 38 94 28 30– 봄 : 02 38 94 29 67 : info@lecoeur-electronique.com

1.21 Save

SAVE AS		
Enregistrer dans : 💼 ustcad	✓ Ø Ø №	Fcœur
Mes documents récents	90	MULTI A-SCAN Display multi charnels a-scan Lise for a mick charde alexeent
Bureau		Imaging Tools Channel multi a-scan groups
Mes documents	40	
Poste de travail	20 10 0K	
I avois teseau I upe : Filtre personnalisé (*.xi Delay Coole	s) Annuler 9 10	
autotest	Calbrate	
Gain Delay Scale	reset > >> 0 seq number Debug	FULL SCREEN
F1 F2 F3		
F8 Time Time Affichage std ADC Auxilaries	Transmitter Spectrum Zoom Print Config Delete Save Reca	Mass Memory Sequencer Setup Quit

DESCRIPTION:

Saves a set-up of OPEN into a file in order to recall it using 'RECALL' function.

FEATURES:

N.A

NOTES:

1.22 Recall sampling frequency

CHANNEL 1	▼ RF ▼ OPEN system	
%	Sampling frequency : 40 MHz	Ecœur
100.0-	Release antiles vi	
80.0-		MULTI A-SCAN
60.0-		Display multi channels a-scan Use for a quick check of each element
40.0-	Nb of seequences to load (Cancel=1)	Imaging Tools
20.0-		Channel multi a-scan groups
0.0	32	
-20.0-		1
-20.0 -	Sampling Frequency	
-40.0 -	40 MHz 🗸	
-60.0-		
-80.0 -		
-100.0-	Cancel	
0 3		
Delay 🗨		
Scale	D #10	
		7
autotest	Calibrate	
Gain	Delay Scale reset > >>	
22.30	88.090 V 9.681	
E1		FULL SCREEN
F 1		
F8 Time - 1480 m/s	Affichage std ADC Auxilaries Transmitter Spectrum Zoom Print Config Delete Save Recal	Mass Memory Sequencer Setup Ouit

DESCRIPTION:

This menu is displayed at the beginning after OPEN is run. The value of sampling frequency can be modified at this time. It will be stored in the set-up file and recalled through the recall function

FEATURES:

N.A

NOTES:

19 route de Courtenay - 45220 – CHUELLES – 會 : 02 38 94 28 30– க : 02 38 94 29 67 드 : info@lecoeur-electronique.com

1.23 Recall

RECALL		?			
Enregistrer dans : 🛅 ustc	ad	S 🖉 😕 🖽•			
Mes documents récents			90	CHANNEL Display a-scans channel pe	r channel
Bureau			70	Allows to modify US para	meters Tools
			60-	Channel multi a-scan	groups
Mes documents			40	Channel displayed	: 1
Poste de travail			30-	30 28	
			10	26 - 24 - 23 -	
Favoris réseau Type :	chier : Filtre personnalisé (*.	ls) V Annule		20 - 18 -	
Delay Scale				16 14	
			Calibr	12 10 ate 8	
autotest Gain	Delay Scale	recet 5	-ss	61	
€ 22.30 dB	88.090 9.681 µs µs/div		0 seq number Debug	1	
F1	F2 F3				
Time 🔫 1480 m/	Affichage std ADC Auxilaria	s Transmitter Spectrum Zoom Prin	: Config Delete Save	Recall Mass Memory Sequencer	ietup Quit

DESCRIPTION:

Recalls a previously stored set-up.

FEATURES:

N.A

NOTES:

1.24.1 - Mass Memory

	High capacity memory manager	
INIT ALL MEMORIES INIT SINGLE MEMORY TEST ALL	L MEMORIES TEST SINGLE MEMORY AUXILIARY ENREGISTREMEN	NT
	Chanel Number 🤌 1	
		Init Memory
		Proceed
		RETURN

DESCRIPTION:

Inits one channel of the mass memory

FEATURES:

NOTES:

Only available with the mass memory hardware option.

1.24.2 - All Memories

	High capacity memory manager	Eccun
INIT ALL MEMORIES	INIT SINGLE MEMORY TEST ALL MEMORIES TEST SINGLE MEMORY AUXILIARY ENREGISTREMENT	
	Starting Channel 1 End Channel 32	
	1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32	
	Channel Number	
		Toit all mémorios
		Proceed
		RETURN

DESCRIPTION:

Inits all channels of mass memory.

FEATURES:

NOTES:

Only available with the mass memory hardware option.

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 禹 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

<u> 1.24.3 – Test Single Memories</u>

DESCRIPTION:

Tests a single mass memory to check the proper or wrong initialisation of it.

FEATURES:

NOTES:

Only available with the mass memory hardware option.

19 route de Courtenay - 45220 – CHUELLES – : 02 38 94 28 30– 몸 : 02 38 94 29 67 : info@lecoeur-electronique.com

<u> 1.24.4 – Auxiliary</u>

DESCRIPTION:

Set or rest mass memory manager to record all events.

FEATURES:

NOTES:

Only available with the mass memory hardware option.

<u> 1.24.5 – "Enregistrement" (Reccording)</u>

DESCRIPTION:

Controls the record of data in the mass memory.

FEATURES:

NOTES:

Only available with the mass memory hardware option.

19 route de Courtenay - 45220 – CHUELLES – : 02 38 94 28 30– 몸 : 02 38 94 29 67 : info@lecoeur-electronique.com

1.25 – Sequencer

This part of the OPEN system is dedicated to user real time applications. Using the micro sequencer allows to program your own emission/ reception/ digitalization/ timings. After setting-up the micro sequencer the 'RUN' command executes the program, outputs external trigger, waits for an input trigger, changes the sequences and stores into the internal memory the samples that are collected during the execution. After the 'RUN' time; the memory can be read and data downloaded from OPEN.

DESCRIPTION OF THE MICRO SEQUENCER

The micro sequencer works as a processor, a program is up-loaded in open and a run-time executes this program. Each line of the program is an instruction which describes the action to do.

LECOEUR ELECTRONIQUE

Transmitter sequence number

This parameter indicates the number of sequence to load before executing the instruction. If the pulser is analog the sequence indicates a wave form, if the pulser is pulsed it sets up a delay. This parameter has the same value for the 8 channels of the same board.

Sampling delay

This parameter is the time before the digitalization begins. In OPEN standard interface the unit is micro-second. This parameter has the same value for the 8 channels of the same board.

Sampling time

The sampling time is the digitalization duration. During this, the signal of all channels is digitalized and stored in memory. In OPEN standard interface the unit is micro-second. This parameter has the same value for the 8 channels of the same board.

Sequence duration

The sequence duration is the time to wait before executing the next instruction. It is generally called PRF period. In OPEN standard interface the unit is the micro-second.

Trigger Out

If this parameter is set to one, OPEN system will generate a pulse on the 'trigger-out' output, at the beginning of the instruction. This pulse is a TTL one and the duration of this pulse is 50 nS.

Trigger In

If this parameter is set to one, OPEN system will wait for an input pulse on the 'Trigger in' input before executing the instruction.

Number of Executions

This statement is a loop generator. The instruction will be executed N times. N is the value of the parameter. The minimum value is 1and the maximum is 255

Pulser delay

This parameter is only active with the option 'analog pulser' of OPEN. The waveform is shifted right in the time base. The value of this shift is the parameter value. In the standard interface the unit is micro–second. This parameter has the same value for the 8 channels of the same board.

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 善 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

This screen is a test tool of the sequencer.

Trigger in: Simulates a hardware trigger input.

Memory address: Selects the part of the memory in which the samples will be stored.

Delay law: If 0 is entered the samples of the selected channel are displayed. If the value is different than 0 the samples of the eight channel of one board are returned. The value is the sequence number

<u>Run:</u> Executes the program of the sequencer previously up-loaded.

<u>Read memory:</u> Reads the memory beginning at the selected address.

19 route de Courtenay - 45220 – CHUELLES – : 02 38 94 28 30– 봄 : 02 38 94 29 67 : info@lecoeur-electronique.com

1.26 Setup

DESCRIPTION:

This window is a factory one. In normal conditions the user does not need to use it.

FEATURES:

N.A

NOTES:

<u> 1.2.1 - Multi A Scan</u>

DESCRIPTION:

Displays simultaneously eight a-scans of OPEN system. The slider on the right side; changes the number of the first channel to be displayed

FEATURES:

N.A

NOTES:

<u> 1.2.2 – Full Screen</u>

DESCRIPTION:

Displays simultaneously 32 channels of OPEN. The slider on the right side changes the number of the first channel to be displayed.

FEATURES:

N.A

NOTES:

<u> 1.3.1 – Group</u>

DESCRIPTION:

Switches the display to 'SUM' display. The signal displayed is the summation of all signals from all channels. Entering this menu will copy automatically GAIN/SCALE/DELAY from channel 1 to all channels. The sequence number can be modified to see the result of summations using different beam forming laws.

FEATURES:

N.A

NOTES: N.A

<u> 1.4. - Imaging</u>

Select desired group in right menu RF OPEN system	
Sampling frequency : 40 MHz	Ecœur
	Analog Transmitter Imaging Display Matrix Excel Channel multi a-scan groups Imaging Tools B-Scan
	Simple B-scan
a indect	Calculation tools
Gain Delay Scale	palette
F8 Time T Offichanacht	Setup Out

DESCRIPTION:

Displays a beam formed image composed with the number of active sequences in open. Allows access to 3 sub-menus:

- SINGLE B-SCAN
- FOCUSED B-SCAN
- CALCULATION TOOLS

FEATURES: N.A NOTES: N.A

<u> 1.4.1 – Simple B-Scan</u>

DESCRIPTION:

Displays all channels simultaneously in colour scale.

FEATURES:

- **A-SCAN**: The signal coming fro the channel pointed by the vertical cursor is displayed
- **DISPLAY FREQUENCY:** Indicates the refresh rate of the screen.
- NUMBER OF CHANNELS: Number of channels installed in OPEN system.
- AXIAL RESOLUTION: Sets a compression factor on samples coming from OPEN boards.

- **SEQUENCE NUMBER:** Number of the sequence to be activated. This is only for pulsers delay sequences.
- BEST: Makes an interpolation between lines.
- **DISPLAY LIN/LOG** : Sets the display in linear or logarithmic mode.
- **PALETTE:** Displays the palette used for the B-SCAN. Beginning and final colours can be adjusted to change the visualisation.
- CALIBRATE: Makes a calibration of 0 for all channels.
- **AUTOSCALE:** Switching off this parameter allows using ZOOM tool located above the auto scale button.

NOTES:

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

1.4.2 – Focused B-Scan

DESCRIPTION:

Displays focussed B-SCAN composed with the number of active sequences in OPEN.

FEATURES:

- **FOCUSSING DEPH:** Indicates the focused point used when delays laws where calculated with the calculation tool
- **PALETTE:** Displays the palette used for the B-SCAN. Beginning and final colours can be adjusted to change the visualisation.
- **INTERPOLATION:** Adds lines to make a better resolution image.

- NUMBER OF FOCALISATIONS: It is the number of sequences used to build the image.

- ANGLE: Recalls the values of the angles used when delay laws where calculated.

NOTES:

: info@lecoeur-electronique.com

<u> 1.4.3 – Calculations Tools</u>

DESCRIPTION:

Simple tool to calculate delays to make a beam formed image.

FEATURES:

- NUMBER OF ELEMENTS: Number of elements of the probe.
- WIDTH OF ELEMENT: The physical width of each element of the probe (in millimetres).

19 route de Courtenay - 45220 – CHUELLES – : 02 38 94 28 30– 봄 : 02 38 94 29 67 : info@lecoeur-electronique.com

- **SPACE INTER-ELEMENT:** The physical space between of each element of the probe (in millimetres).
- VELOCITY: The velocity of ultrasound in the material.
- ALPHA: the beginning and ending angles for deflexion.
- FOCUSING DEPTH: The distance of focalisation point.
- **NUMBER OF SEQUENCES:** Allows changing the number of sequences actives is OPEN. Validates this choice by pushing 'APPLY' button.
- NAME OF THE DELAYS FILES: This controller holds the name of the directories that will be created to store the delays files which contain the pulsers and receiver delays for each sequence. To get more information please refer to the Excel file section. The 'CREATE FILE' button changes the files and directories names.
- **DESTROY EXISTING FILES**: Destroys the files and directories previously created.
- ALL DELAYS TO ZERO: Creates files filled with delays set to value 0.
- CALCULATE DELAY LAWS: Generates the delays files.
- **VIEW IMAGE:** Displays the result of the focused image.

NOTES:

This very simple tool is provided as a test tool.

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

2. - <u>Matrix</u>

DESCRIPTION:

Gets access to matrix menus.

FEATURES:

N.A

NOTES:

19 route de Courtenay - 45220 – CHUELLES – 奮 : 02 38 94 28 30– க : 02 38 94 29 67 므 : info@lecoeur-electronique.com

2.1. – Matrix of Receivers Delays

DESCRIPTION:

Displays the value of receivers delays applied on each channel for the selected sequence.

FEATURES:

N.A

NOTES:

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 禹 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

2.2 – Matrix of Pulser Delay

DESCRIPTION:

Displays the value of pulsers delays applied on each channel for the selected sequence.

FEATURES:

N.A

NOTES:

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

2.3 – Matrix of Pulser Width

MATRIX OF PULSERS WIDTHS										
Channel 1	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00		
Channel 9	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	Set all channels to	
Channel 17	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9 100.0	
Channel 25	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	OK	
Channel 33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Channel 41	1.00	1.00	1.00	9 1.00	1.00	9 1.00	\$ 1.00	9 1.00		
Channel 49	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Channel 57	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Channel 65	1.00	1.00	1.00	1.00	1.00	1.00	9 1.00	1.00		
Channel 73	1.00	0 1.00	1.00	\$ 1.00	1.00	9 1.00	\$ 1.00	9 1.00		
Channel 81	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Channel 89	1.00	1.00	1.00	1.00	1.00	9 1.00	1.00	1.00		
Channel 97	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Channel 105	1.00	1.00	\$ 1.00	\$ 1.00	1.00	1.00	\$ 1.00	9 1.00		
Channel 113	1.00	1.00	\$ 1.00	1.00	1.00	1.00	\$ 1.00	9 1.00	Capcol	
Channel 121	1.00	1.00	1.00	1.00	1.00	1.00	1.00	9 1.00	Validate	
			Lead Solid		Record and and				valuate	

DESCRIPTION:

An advanced menu to change the width of pulsers. This menu must not be used before a prior contact with LECOEUR ELECTRONIQUE technical support before.

FEATURES:

N.A

NOTES:

<u> 2.4 – Matrix OF Receivers Gain</u>

MATRIX OF RECEIVERS GAINS (dB)									
Channel 1	8 20.00	20.00	20.00	20.00	20.00	20.00	8 20.00 20	.00	
Channel 9	20.00	20.00	20.00	20.00	20.00	20.00	0 20.00	.00 Set all channels to	
Channel 17	20.00	20.00	20.00	20.00	20.00	20.00	0.00	.00 9 40.00 dl	
Channel 25	20.00	20.00	20.00	20.00	20.00	20.00	8 20.00 20	.00	
Channel 33	1.00	1.00	1.00	1.00	1.00	1.00	€ 1.00 € 1.	00	
Channel 41	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.	00	
Channel 49	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00	
Channel 57	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00	
Channel 65	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.	00	
Channel 73	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.	00	
Channel 81	1.00	1.00	1.00	1.00	1.00	1.00	÷ 1.00 ÷ 1.	00	
Channel 89	1.00	1.00	1.00	1.00	\$ 1.00	1.00	1.00 1.	00	
Channel 105	1.00	1.00	1.00	1.00	1.00	1.00	€ 1.00 € 1.	00	
Channel 113	1.00	1.00	1.00	1.00	1.00	9 1.00	€ 1.00 € 1.	00	
Channel 121	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.	00 Cancel	
Chamber 121	1.00	1.00	9 1.00	1.00	1.00	1.00	1.00 1.	00 Validate	

DESCRIPTION:

Displays and offers the possibility to change the receivers gains.

FEATURES:

N.A

NOTES:

<u> 3 – Excel</u>

DESCRIPTION:

Gives access to the global set-up file of OPEN.

FEATURES:

N.A

NOTES:

19 route de Courtenay - 45220 – CHUELLES – : 02 38 94 28 30– 몸 : 02 38 94 29 67 : info@lecoeur-electronique.com

<u>3.1 – Edit Excel File</u>

Select desired group in right me		OPEN system	Frank
	Saubarð u ofrens k + 40 km fr		Analog Transmitter Imaging Display Matrix Excel
			edit excel file inport excel file values
autotest		🥥 Calibrate	
Gain Del 36.50 0.00 dB µs	lay Scale 0 0 16.647 µs/div	reset > >> 0 seq number Debug.	
F1 F2	F3		
8 Time 🕶 Afficha	age std	Print Delete Save	Setup

DESCRIPTION:

Global set-up file of OPEN. It contains all information about OPEN set-up. Please read the EXCEL FILE section to understand the use of this file.

FEATURES:

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

<u>3.1 – Import Excel File Values</u>

Select desired group in right menu		OPEN system	0
-	Sampling frequency + 40 MHz		Ecœun
			Analog Transmitter Imaging Display Matrix Excel
			edit excel file inport excel file values
		Calibrate	
Gain Delay 36.50 0.000 dB µs	Scale rese 16.647	t > >> 0 seq number Debug	
F1 F2	F3		
F8 Time Affichage std		Print Delete Save	Setup Quit

DESCRIPTION:

Imports the values contained in excel file and set them active in OPEN.

FEATURES:

NOTES:

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– ≞ : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

<u>4. – Analog Transmitter</u>

DESCRIPTION:

Gives access to functions for analog transmitter

FEATURES:

N.A

NOTES:

<u>4.1 – Name</u>

DESCRIPTION:

Indicates/Modifies the current active analog pulser waveform for the selected sequence/Channel.

FEATURES:

N.A

NOTES:

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

<u>4.1.1 – Change Emission File</u>

Enregistrer sou	5		
Enregistrer dans :	🚞 analog_pulser	✓ Ø Ø №	Fcœur
Mes documents récents Bureau	90 91 92 93 94 95 96 97 97 98		Display Matrix Excel Analog Transmitter Imaging Name Tools
Mes documents			current Transmitter file name
mes documents			3.XLS
Poste de travail			Change emission file
Favoris réseau	Nom du fichier : Type : Tous les fichiers (".")	OK Annuler	
autotest			Calibrate
Gain 20.00 dB	Delay Scale 0 0 0 0 0 0 10.000 µs µs/dw	reset > >> 0 seq number	Directory C(SAPHIRP\ANALOG_PULSER
F1	F2 F3		
F8 Time 🔻	Affichage std	Print Delete S	ave Setup Quit

DESCRIPTION:

Loads a new waveform for the analog pulser.

FEATURES:

N.A

NOTES:

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

<u>4.2 – Tools</u>

DESCRIPTION:

Gives access to the waveform editor.

FEATURES:

N.A

NOTES:

<u>4.2.1 – Edit Transmitter curve</u>

DESCRIPTION:

Provides an advanced tool to edit/ create/ store/recall transmitter waveforms.

FEATURES:

N.A

NOTES:

<u>5. – Imaging</u>

DESCRIPTION:

Displays information about the analog transmitter and receiver delays

FEATURES:

NOTES:

Futures up-dates of OPEN software will be located in those menus.

2) Excel global set-up file description

The complete set-up of your OPEN system is contained in an Excel file located in: **c:\saphirp\brainscan.xls.** Below is the description of this file.

2.1) what's in brainscan.xls file

This section describes the use of parameters inside excel file.

× 1	Aicrosoft Exc	el - brainscan.xls								
:2)	Eichier Editio	on Affichage Insertion	Forma <u>t O</u> utils	s <u>D</u> onnées Fe <u>n</u> é	être <u>?</u>				Tapez une question	8 ×
In			- 🔓 🧟 Σ	: - ≙↓ ∰1 @	🔛 🗄 Arial		11 - G I S		፼€ ≣	3 . A . Z
: 🖃		uctTag 🚮 Start JuctWrite 👂	S Undo Write	Modify ? Help		pinte (
: 🖪	A1	Channel NB	a ouron write a	Moon's Sillerh	5					
	A	B	C	D	F	F	G	Н		
	Channel NB	Type of treatment			-				Receiver gain (dB)	
1	1	7	OFF	ON	1		n		40	30
3	2	7	OFF	ON	1	-	 		40	30
4	3	7	OFF	ON	1		0		40	30
5	4	7	OFF	ON	1	-	0		40	30
6	5	7	OFF	ON	1		0		40	30
7	6	7	OFF	ON	1		0		40	30
8	7	7	OFF	ON	1		0	-	40	30
9	8	7	OFF	ON	1		0		40	30
10	9	7	OFF	ON	1		0		40	30
11	10	7	OFF	ON	1		0		40	30
12	11	7	OFF	ON	1		0		40	30
13	12	7	OFF	ON	1		0		40	30
14	13	7	OFF	ON	1		0		40	30
15	14	7	OFF	ON	1		0		40	30
16	15	7	OFF	ON	1		0		40	30
17	16	7	OFF	ON	1		0		40	30
18	17	7	OFF	ON	1		0		40	30
19	18	7	OFF	ON	1		0		40	30
20	19	7	OFF	ON	1		0		40	30
21	20	7	OFF	ON	1		0		40	30
22	21	7	OFF	ON	1		0		40	30
23	22	7	OFF	ON	1		0		40	30
24	23	7	OFF	ON	1		0		40	30
25	24	7	OFF	ON	1		0		40	30
26	25	7	OFF	ON	1		0		40	30 🗸
14 4	→ → \ main	/ treatment description	/ Feuil3 / Fe	uil4 / Feuil5 / Feu	iil6 / Feuil7 /		<			>
Prêt										NUM

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 畳 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

The sheet contains in lines the channel number and in rows the parameters. To simplify the description we will only describe the more important parameters.

<u>Channel number</u>: The number of the channels in which parameters contained on this line are used to.

Type of treatment: OPEN system always work on processing number 7.

Receiver gain: Gain of each channel in dB.

🛿 Microsoft Excel - brainscan.xls				- E F
Eichier Edition Affichage Insertion Format Outils Données Fenêtre ?			Tapez une question	8
🗋 🧉 🗐 🕘 📖 🛍 🛍 📲 🗸 🔊 🗸 🎇 😓 🗴 - 💱 🛄 🎯 📲 👔 Arial		• 11 • G I § 🗐 🗐 🗃]€ ≇ ⊡•	👌 • 🛕 •
📴 JustSign 📆 JustTag 🚧 Start JustWrite 🖄 Undo Write 🔟 Modify 🔋 Help 💂				
A1 🗾 🖈 Channel NB				
	М	N	0	
File in which are delays for pulsers			Receivers sampling frequency	
2 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.1.TXT	8	C:\saphirp\analog_pulser\3.xls	40	PHIRP\BRA
3 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.2.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BR/
4 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.3.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BR/
5 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.4.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BR/
6 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.5.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BR.
C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.6.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BR.
C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.7.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BR.
C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.8.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BR.
0 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.9.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BR.
1 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.10.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BRA
2 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.11.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BR/
3 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.12.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BR/
4 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.13.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BRA
5 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.14.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BR/
6 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.15.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BR/
7 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.16.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BRA
8 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.17.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BRA
9 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.18.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BRA
0 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.19.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BRA
1 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.20.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BRA
2 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.21.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BRA
3 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.22.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BRA
4 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.23.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BRA
5 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.24.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BRA
26 C:\SAPHIRP\PULSER_DELAYS\FOCALISATION102\FOCALISATION102.25.TXT	8	C:\saphirp\analog_pulser\3.xls	80	PHIRP\BRA
↓ ▶ N main / treatment description / Feuil3 / Feuil4 / Feuil5 / Feuil6 / Feuil7 /		<		>

LECOEUR ELECTRONIQUE

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

File in which are delays for pulsers: The file pointed by this cell contains the delays that are applied to pulsers for all sequences. Each channel could have a different pulser delay file.

<u>Receivers sampling frequency</u>: Only the first line (in red) is active. The value of this cell is the sampling frequency of all analog to digital converters connected to the receivers. The unit is MHz.

×	Microsoft Excel - brainscan.xls				
:2	Eichier Edition Affichage Insertion Format Outils Données Fenêtre ?		Tapez	une question 👻	_ & ×
1 B	📂 🗐 🎒 🛍 🕒 🏝 • 🖤 • 🞇 💁 Σ • 斜 🛍 🔘 📲 🖪	ial • 11 • G I S	≡ = = • • •	🖅 🖽 • 💩 • 🖉	A - 1
: 67	NuchSign 📅 NuchTag 🎆 Shart NuchWite 🕅 Undo Wite 🖌 Modify 🤗 Help				
: •					
	P	Q	R	S	-
1	File in which are delays for receivers	Analog pulsers wave form sequences		Analog transmitters sampling frequency	Pr =
2	\SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.1.T;	c:\saphirp\Brain trans seq\wave1.txt		80	
3	\SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.2.T;	c:\saphirp\Brain trans seq\wave1.txt		80	
4	\SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.3.T	c:\saphirp\Brain trans seq\wave1.txt		80	
5	\SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.4.T;	c:\saphirp\Brain trans seq\wave1.txt		80	
6	\SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.5.T;	c:\saphirp\Brain trans seq\wave1.txt		80	
7	\SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.6.T;	c:\saphirp\Brain trans seq\wave1.txt		80	
8	\SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.7.T	c:\saphirp\Brain trans seq\wave1.txt		80	
9	\SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.8.T;	c:\saphirp\Brain trans seq\wave1.txt		80	
10	\SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.9.T	c:\saphirp\Brain trans seq\wave1.txt		80	
11	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.10.T	c:\saphirp\Brain trans seq\wave1.txt		80	
12	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.11.T	c:\saphirp\Brain trans seq\wave1.txt		80	
13	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.12.1	c:\saphirp\Brain trans seq\wave1.txt		80	
14	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.13.T	c:\saphirp\Brain trans seq\wave1.txt		80	
15	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.14.T	c:\saphirp\Brain trans seq\wave1.txt		80	
16	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.15.T	c:\saphirp\Brain trans seq\wave1.txt		80	
17	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.16.T	c:\saphirp\Brain trans seq\wave1.txt		80	
18	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.17.T	c:\saphirp\Brain trans seq\wave1.txt		80	
19	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.18.T	c:\saphirp\Brain trans seq\wave1.txt		80	
20	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.19.T	c:\saphirp\Brain trans seq\wave1.txt		80	
21	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.20.T	c:\saphirp\Brain trans seq\wave1.txt		80	
22	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.21.T	c:\saphirp\Brain trans seq\wave1.txt		80	
23	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.22.T	c:\saphirp\Brain trans seq\wave1.txt		80	
24	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.23.T	c:\saphirp\Brain trans seq\wave1.txt		80	
25	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.24.T	c:\saphirp\Brain trans seq\wave1.txt		80	
26	SAPHIRP\BRAIN DELAY SEQ\FOCALISATION102\FOCALISATION102.25.T	c:\saphirp\Brain trans seq\wave1.txt		80	~
H -	→ M\main / treatment description / Feuil3 / Feuil4 / Feuil5 / Feuil6 / Feuil	7/ 🔽 💷			>
Prêt				NUM	

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 몸 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

File in which are delay for receivers: The file pointed by this cell contains the delays that are applied to receivers for all sequences. Each channel could have a different receiver delay file.

Analog pulser waveform sequences: The file pointed by this cell contains the name of waveforms that are applied to analog pulsers for all sequences. Each channel could have a different waveform files.

Analog transmitters sampling frequency: Only the first line (in red) is active. The value of this cell is the sampling frequency of all digital to analog converters connected to the analog transmitter to generate waveforms. The unit is MHz.

🖬 Microsoft Excel - brainscan.xls											
:1	Eichier Edition Affichage Insert	tion Forma <u>t</u>	<u>O</u> utils <u>D</u> onnées	Fe <u>n</u> être	2				Tapez	une question	8 ×
	🐸 🛛 🖂 🚳 🖪 •	9 - G	🥺 Σ - 🤃		2 Arial	• 11	- GIS		€ 💀 🖬		8 · A · 💾
: 🖃	🖓 Just Sian 🛱 Just Tag 🕷 Start Just Write 🖏 Undo Write 尾 Modify 😵 Help										
	T1 × £										
	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE 💳
1	Name of dac curve				VELOCITY (m/S)	-					
2	c:\saphirp\ustcad\CDAC1	36.5	16.646994	0	1480	0	0	0	0	0	0
3	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
4	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
5	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
6	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
7	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
8	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
9	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
10	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
11	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
12	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
13	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
14	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
15	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
16	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
17	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
18	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
19	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
20	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
21	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
22	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
23	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
24	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
25	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0
26	c:\saphirp\ustcad\CDAC1	36.5	20	50	5950	0	0	0	0	0	0 🗸
14 4	→ → \main / treatment descrip	otion / Feuil:	3 / Feuil4 / Feuils	5 / Feuil6 ,	(Feuil7 /	1	<	[m]			>
Prêt										N	UM

Name of DAC curve: This cell contains the path to the DAC curve applied on the channel. The DAC curve file is a text file that describes the shape of the gain variations.

Velocity: The velocity of ultrasound. This parameter is used to convert time in distance in the OPEN standard interface.

🛛 Microsoft Excel - brainscan.xls												
🕮 Eichier Edition Affichage Insertion Format Outils Données Fenêtre ? Tapez une question 🗸 🗗											8 ×	
in.	🖻 🖪 🔒		🖹 + 🗳 +	🔓 🧕 Σ 🔸	≜ ↓ ∰ ⊘	🙄 🗄 Arial	- 1	1 - G I	s I I I	= 🔤 🕎 🛊	e 🛊 🖽 🗸	3 · A · 2
: 🖃	🖓 JustSian 🛱 JustTaa 🕷 Start JustWrite 🖏 Undo Write 🔟 Modify 🤶 Help 📕											
3	BD1	f.			iodity & theip	2						
	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD 💳
	PRF											
1	0.04	100	02.0	0	20	4	4	4	4	4	2	
2	0.01	100	92.0	0	20	1	1	1	1	1	2	2
3	0.01	100	92.0	0	20	1	1	1	1	1	2	2
4	0.01	100	92.0	0	20	1	1	1	1	1	2	2
6	0.01	100	92.8	0	20	1	1	1	1	1	2	2
7	0.01	100	92.8	0	20	1	1	1	1	1	2	2
8	0.01	100	92.8	0	20	1	1	1	1	1	2	2
q	0.01	100	92.8	0	20	1	1	1	1	1	2	2
10	0.01	100	92.8	0	20	1	1	1	1	1	2	2
11	0.01	100	92.8	0	20	1	1	1	1	1	2	2
12	0.01	100	92.8	0	20	1	1	1	1	1	2	2
13	0.01	100	92.8	0	20	1	1	1	1	1	2	2
14	0.01	100	92.8	0	20	1	1	1	1	1	2	2
15	0.01	100	92.8	0	20	1	1	1	1	1	2	2
16	0.01	100	92.8	0	20	1	1	1	1	1	2	2
17	0.01	100	92.8	0	20	1	1	1	1	1	2	2
18	0.01	100	92.8	0	20	1	1	1	1	1	2	2
19	0.01	100	92.8	0	20	1	1	1	1	1	2	2
20	0.01	100	92.8	0	20	1	1	1	1	1	2	2
21	0.01	100	92.8	0	20	1	1	1	1	1	2	2
22	0.01	100	92.8	0	20	1	1	1	1	1	2	2
23	0.01	100	92.8	0	20	1	1	1	1	1	2	2
24	0.01	100	92.8	0	20	1	1	1	1	1	2	2
25	0.01	100	92.8	0	20	1	1	1	1	1	2	2
26	0.01	100	92.8	0	20	1	1	1	1	1	2	2 🗸
I4 4 Prêt	rét Numain / treatment description / Feuil3 / Feuil4 / Feuil5 / Feuil6 / Feuil7 / Image: Comparison of the second											

LECOEUR ELECTRONIQUE

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 墨 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

<u>PRF</u>: The value of repetition pulse frequency <u>P.R.F (repetition Frequency)</u>: This parameter controls the rate of the pulser. For example setting 1 KHz will generate pulses every millisecond.

- Entering 0.03 KHz switches the system to the "EXTERNAL TRIGGER" mode. In this mode a TTL 5 Volts pulse must be input in the plus called 'EXTERNAL TRIGGER'. The active edge is positive.
- Entering 0.01 KHz switches the system to the "SOFT TRIGGER" mode. In this mode the pulser generates pulses only when it is necessary (When a A-Scan digitalisation is requested). If no request is made on OPEN the pulser is set to OFF.

🖬 Microsoft Excel - brainscan.xls												
:B)	📳 Echier Edition Affichage Insertion Format Qutils Données Fenêtre 2 Tapez une question 🔻 🗗										,n ×	
In	- 1											
: 🖸												
	BH	BI	BJ	BK	BI	BM	BN	BO	BP	BQ	BR -	
1	ON/OFF DAC	DIST / TIME		SMOOTH	DL	Bim	0	SEQUENCER STEP	SEQUENCER TRANS_SEQ	SEQUENCER NUM_DELAY µS		
2	0	0	0	0	8	1	0	1	0	0	10	
3	0	0	0	0	8	1	0	2	0	0	11	
4	0	0	0	0	8	1	0	3	0	0	12	
5	0	0	0	0	8	1	0	4	0	0	13	
6	0	0	0	0	8	1	0	5	0	0	14	
7	0	0	0	0	8	1	0	6	0	0	15	
8	0	0	0	0	8	1	0	7	0	0	10	
9	0	0	0	0	8	1	0	8	7	0	10	
10	0	0	0	0	8	1	0	9	0	0	10	
11	0	0	0	0	8	1	0	10	1	0	10	
12	0	0	0	0	8	1	0	11	2	0	10	
13	0	0	0	0	8	1	0	12	3	0	10	
14	0	0	0	0	8	1	0	13	4	0	10	
15	0	0	0	0	8	1	0	14	5	0	10	
16	0	0	0	0	8	1	0	15	6	0	10	
17	0	0	0	0	8	1	0	16	7	0	10	
18	0	0	0	0	8	1	0	17	0	0	10	
19	0	0	0	0	8	1	0	18	0	0	10	
20	0	0	0	0	8	1	0	19	0	0	10	
21	0	0	0	0	8	1	0	20	0	0	10	
22	0	0	0	0	8	1	0	21	0	0	10	
23	0	0	0	0	8	1	0	22	0	0	10	
24	0	0	0	0	8	1	0	23	0	0	10	
25	0	0	0	0	8	1	0	24	0	0	10	
26	0	0	0	0	8	1	0	25	0	0	10 🗸	
14 4	N (· · · ·) \ main / treatment description / Feuil3 / Feuil4 / Feuil5 / Feuil6 / Feuil7 / S											
Prét												

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 畳 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

ON/OFF DAC: Setting this value to 0 switches off the DAC curve. Setting 1 activates it.

TIME/DIST: Setting this value to 0 indicates to OPEN standard interface that unit is time. Setting it to 1 validates the unit to millimeters.

SMOOTH: Current state of the DAC curve. Smoothed ->1 / not smoothed ->0.

🖾 Microsoft Excel - brainscan.xls												
:2	🕲 Fichier Edition Affichage Insertion Format Outils Données Fenêtre ?											
:							<u> </u>			- 5		
: 🖂 Juschign 🔛 Juschign 🔛 Start Juschinte 🔛 Modify 🦞 Help												
-		7× SMOUTH	PO	DD	DC	DT	DII	D\/	Diar			
	80	DF	DQ	DR	03	DI	BU		DVV	^		
1	SEQUENCER STEP	SEQUENCER TRANS_SEQ	SEQUENCER NUM_DELAY µS	SEQUENCER NUM_WIDTH µS	SEQUENCER SEQ_TIME µS	SEQUENCER Trigger out	SEQUENCER Trigger in	SEQUENCER LOOP	SEQUENCER Pulser delay	for pa		
2	1	0	0	10	1000	1	0	1	0			
3	2	0	0	11	1000	1	0	1	0			
4	3	0	0	12	1000	1	0	1	0			
5	4	0	0	13	1000	1	0	1	0			
6	5	0	0	14	1000	1	0	1	0			
7	6	0	0	15	1000	1	0	1	0			
8	7	0	0	10	1000	1	0	1	0			
9	8	7	0	10	1000	1	0	0	0			
10	9	0	0	10	1000	1	0	1	0			
11	10	1	0	10	1000	1	0	1	0			
12	11	2	0	10	1000	1	0	1	0			
13	12	3	0	10	1000	1	0	1	0			
14	13	4	0	10	1000	1	0	1	0			
15	14	5	0	10	1000	1	0	1	0			
16	15	6	0	10	1000	1	0	1	0			
17	16	7	0	10	1000	1	0	1	0			
18	17	0	0	10	1000	1	0	1	0			
19	18	0	0	10	1000	1	0	1	0			
20	19	0	0	10	1000	1	0	1	0			
21	20	0	0	10	1000	1	0	1	0			
22	21	0	0	10	1000	1	0	1	0			
23	22	0	0	10	1000	1	0	1	0			
24	23	0	0	10	1000	1	0	1	0			
25	24	0	0	10	1000	1	0	1	0	į,		
26	25	0	0	10	1000	1	0	1	0	~		
H 4	I ← → → main / treatment description / Feuil3 / Feuil3 / Feuil5 / Feu											
Prêt												

LECOEUR ELECTRONIQUE

LECOEUR ELECTRONIQUE

19 route de Courtenay - 45220 – CHUELLES – ☎ : 02 38 94 28 30– 畳 : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com

The parameters from 'SEQUENCER STEP' to 'SEQUENCER pulser delay' are used in the micro sequencer function.

Sequencer step

This parameter indicates the order in which the program will be executed Step 1, Step 2, etc ... This parameter must not be modified.

Sequencer trans seq

This parameter indicates the number of sequences to load before executing the instruction. I f the pulser is analog the sequence indicates a wave form, if the pulser is pulsed it sets up a delay. This parameter has the same value for the 8 channels of the same board.

Sequencer num delay

This parameter is the time before the digitalization begins. In OPEN standard interface the unit is micro-second. This parameter has the same value for the 8 channels of the same board.

Sequencer num width

The sampling time is the digitalization duration. During this, the signal of all channels is digitalized and stored in memory. In OPEN standard interface the unit is micro-second. This parameter has the same value for the 8 channels of the same board.

Sequencer seq time

The sequence duration is the time to wait before executing the next instruction. It is usually called the PRF period. In OPEN standard interface the unit is micro-second.

Sequencer Trigger Out

If this parameter is set to one, OPEN system will generate a pulse on the 'trigger-out' output, at the beginning of the instruction. This pulse is a TTL one the duration of this pulse is 50 nS.

Sequencer Trigger In

If this parameter is set to one, OPEN system will wait for an input pulse on the 'Trigger in' input before executing the instruction.

Sequencer loop

This statement is a loop generator. The instruction will be executed N times. N is the value of the parameter. The minimum value is 1 and the maximum is 255.

Sequencer pulser delay

This parameter is only active with the option 'analog pulser' of OPEN. The waveform is directly shifted into the time base. The value of this shift is the parameter value. In the standard interface the unit is micro–second. This parameter has the same value for the 8 channels of the same board

LECOEUR ELECTRONIQUE

🛛 Microsoft Excel - brainscan.xls												
:2)	Eichier Edition A	nier Edition Affichage Insertion Format Outils Données Fenêtre ? Tapez une question							une question	8×		
in		13. I 🗈 🙉 •	17 - 18 S	Σ - 41 1		Arial 🚽 11			₩ 9 €		- A - "	
: 17		M Start JustWri	te 🕅 Undo Wr	ite 📝 Modify 🧖	Help							
4												
-	BX	BY	BZ	CA CA	CB	CC Barre de formule	CE	CF	CG	СН	CI 🚽	
1	focalisation parameters											
2	1480	0	97	-18	1480							
3	-30	0	97	-17.428571	1480							
4	30	0	97	-16.857143	1480							
5	80	0	97	-16.285714	1480							
6	32	2 0	97	-15.714286	1480							
7	0.8	0	97	-15.142857	1480							
8	0	0	97	-14.571429	1480							
9	32	2 0	97	-14	1480							
10	54054	0	97	-13.428571	1480							
11	66999	0	97	-12.857143	1480							
12	1.5	i 0	97	-12.285714	1480		_					
13	1.5	i O	97	-11.714286	1480							
14	1.5	i 0	97	-11.142857	1480							
15	1.5	i 0	97	-10.571429	1480							
16	1.5	i 0	97	-10	1480							
17	1.5	i O	97	-9.428571	1480		_					
18	1.5	i O	97	-8.857143	1480							
19	1.5	i O	97	-8.285714	1480		_					
20	1.5	i 0	97	-7.714286	1480							
21	1.5	i 0	97	-7.142857	1480		_					
22	1.5	i 0	97	-6.571429	1480							
23	1.5	i O	97	-6	1480		_					
24	1.5	i 0	97	-5.428571	1480							
25	1.5	i 0	97	-4.857143	1480							
26	1.5	; O	97	-4.285714	1480						~	
4 4	I C C C C C C C C C C C C C C C C C C C											
Prêt	Prét											

Focalization parameters: Internal use of OPEN software.

19 route de Courtenay - 45220 – CHUELLES ☎ : 02 38 94 28 30– : 02 38 94 29 67 ⊑ : info@lecoeur-electronique.com LECOEUR ELECTRONIQUE

3) Hardware presentation

FRONT VIEW CLOSED

FRONT VIEW OPEN

□ : info@lecoeur-electronique.com

The standard OPEN includes no internal computer, an external PC is connected to the OPEN through a USB2 link. It means that the LEDS and switches are not activated.

<image>

REAR VIEW

- **Power 110/220 V**: This input is the power supply input. It must be connected to operate.

- **Trigger in:** This is a **TTL input**; the maximum voltage is 5 Volts. It is used to synchronize OPEN with external equipments.

- **Trigger Out:** This is a 5 Volts TTL output to synchronize other equipments from OPEN. It usually generates pulses 0-5 Volts 50 nS width.

- **Single / dual probe :** This is a switch. In 'dual' probe position the user needs to connect two probes to OPEN: One is the transmitter probe the other

one is the receiver. In 'single probe' position only one probe does both transmission and reception.

- **Probes:** Two sockets where probes must be connected. If OPEN works in single probe the probe can be connected in 'TRANSMITTER' or 'RECEIVER'