

LECOEUR ELECTRONIQUE

300 Chemin des Comtois 45220 CHUELLES - FRANCE -Tel : +33 (0)2 38 94 28 30

Tel: +33 (0)2 38 94 28 30 Fax: +33 (0)2 38 94 29 67

Rédacteur	S.BERTOLOTTO
Date	17/09/2018

Révision 2 le 17 Septembre 2018

1 MENU

1	MENU2
2	<i>I/O</i> 3
3	DECLARATION3
4	DESCRIPTION3
5	A-SCAN COUNTER FUNCTION
6	CODERS INTERFACE9
7	DAC CURVE FUNCTION10
8	ATTENTION

2 <u>I/O</u>

INPUT	OUTPUT			
	Code			
ProductNumber				
ChannelNumber				
Function				
In1				
In2				
In3				
In4				
In5				
In6				
	Out1			
	Out2			
	Out3			
	Out4			
	Out5			
	Out6			
Array (tableau)				
Array lenght				

3 <u>DECLARATION</u>

long __cdecl ApintUsb(unsigned long ProductNumber, unsigned long ChannelNumber, char Function[], double In1, double In2, double In3, double In4, double In5, double In6, short int *Out1, short int *Out2, short int *Out3, short int *Out4, short int *Out5, short int *Out6, unsigned short int Array[], long *len);

<u>Note:</u> DLL was compiled in C standard call. For Visual Basic language, DLL must be recompiled in standard call.

4 DESCRIPTION

First of all: ProductNumber and ChannelNumber are 2 parameters which must be set each time to :

- 0 = USBox
- 1 = US-Key
- 0..7 = For an 8 multi channel system*

Note:

- Up case letter and space are important
- Code return 1 is function is recognized else 0. It's not an error code

Function	Description	Input	Output
"RunExeX32"	BEFORE	To load the TSR for x32 to x64	
Testilization 192	EVERYTHING		
	You must call		
	this function	ONLY for x64 DLL	
"KillExeX32"	The last	To kill the TSR for x32 to x64	
	function to call	conversion	
	before exit		
		ONLY for x64 DLL	
"Init usb",	Initialize the	Attention, it is necessary to call this	
"Usb init",	USB2	function as each times as there are ways	
"init usb",	connection	passing the number of the way to initialize	
"usb init"		(07)	
"Load configuration",	Loads a default	In # $1 = Nb$ total of channels	
"load configuration"	configuration		
	contained in c:	Attention, it is necessary to call once	
	\ saphirp \	this function with the total number of	
	ustcad	lanes. Configurations come from 1V,	
		1D, 2V, 2D, 3V, 3D files, etc.	
"Channel", "channel"	Set the current channel	<u>*</u>	
"Id code", "id code"	Hardware's code		Out # 1
,	reading		
"Prf", "prf"	PRF adjustment	In # 1 = PRF (kHz)	
"Echo-start",	Echo-start	In # 1 = Echo-start position (μ s)	
"echo-start"	inhibition	In # 2 = Echo-start width (μs) =	
		In # $1 = 0 \Rightarrow$ echo-start OFF	
"Pulse delay", "pulse	Delay	In # 1 = Pulse delay in μ s ($n*1.6\mu$ s)	
delay"			
"Filter/Mode",	_	In # $1 = 0 = 1.25$ MHz	
"filter/mode"	single/double	= 1 = 2.5 MHz	
	crystal	= 2 = 5MHz	
	Mode	= 3 = 10 MHz	
		= 4 = Broad band	
		In # $2 = 0$: emetter / receiver strapped	
		= 1 : emetter / receiver disconnected	
		disconnected	
"Gain", "gain"	Gain adjustment	In # 1 = gain (dB)	
, Smir	Zazza dajastinont		
"Voltage", "voltage"	Pulse voltage	$10 \le \text{In } \# 1 \le 230 \text{ (V)}$	
<i>y</i>	adjustment		
"Width", "width"	Pulse width	$0 \le \text{In} \# 1 \le 255$	
, i	adjustment	In#2: Wave train ON(1) OFF(0)	
		In#3 : Number of pulses	
"Echo-start mode",	echo-start on/off	In # $1 = 0$ negative wave / 1 positive wave	
"echo-start mode"	+ polarity	In # $2 = 0100$ (%) echo-start threshold	
Coolo d-1 1			
"Scale delay", "scale	Delay	$ \ln \# 1 = \text{delay } (\mu s) $	
delay"	adjustment	X #4 0	
"Wave", "wave"	Select Wave to	In # $1 = 0$ rectified / 1 negative / 2	
	control	positive	

"Gate position", "gate	Gate position	In # 1 = Gate number 13	
position"	Gate position	In # 1 = Gate number 15 In # 2 = Gate position (μ s)	
"Gate width",	Gate width	In # 1 = Gate number 13	
"gate width"	Gate width	In # 2 = Gate width (μ s)	
"Gate hight",	Gate height	In # 1 = Gate number 13	
"gate hight"	Gate height	In # 2 = Gate height (%)	
"Relays", "relays"	Alarm on/off	In # 1 = bit0 : Gate1 / bit1 : Gate2 /	
Relays, lelays	Alarin on/on	bit2 : Gate3	
		onz. Gutes	
		bit value: 0 alarm on appear. / 1 disapp	
"Alarm filter", "alarm	Strike before	In # $1 = Gate number 13$	
filter"	alarm	In # $2 =$ Number of shots before alarm	
"Measures",	Gates measures		Out # 2= alarme1 (MSB), amplitude1
"measures"			(LSB)
	No alarm $= 0$		Out # 3 = alarme2 (MSB), amplitude2 (LSB)
			Out # 4 = alarme3 (MSB), amplitude3
			(LSB) Out # 5 = distance1 (step of 12.5ns)
			Out # 6 = distance2 (step of 12.5ns)
			Out # 1 = distance3 (step of 12.5ns)
"A-scan", "Ascan",	Get a-scans	In # 1 = 0 HF / 1 A-scan	Array
"a-scan", "ascan"	coming from the	In # 2 = Retentivity display (0255)	Out#1 \neq 0 \rightarrow timeout, NO
d sour , asour	12bit analog to	In # 3 = Number of samples	A-scan available
	digital converter	In #4 = A-scan wave : 0 full rectified /	
		1 negative / 2 positive	
"Help", "help"	Function list		Array U8 (ASCII code)
"Version", "version"	DLL Version		Out#1
			Out#1 : LSB
			Out#2 : MSB
"SamplingFreq/Mode",	Change the	In#1 : 0=160 1=80 2=40 3=20 4=10MHz	
"samplingfreq/mode",	sampling	In # $2 = 0$: emetter / receiver strapped	
"samplingfreqmode"	frequency	= 1 : emetter / receiver	
		disconnected	
		A 10 C	
		① If frequency is different of 80MHz,	
		filter is set to broadband and DAC is	
"Coolo? "Coolo A	Define the	stopped	
"Scale", "Scale A-scan counter"	Define the number of	In#1 : Step of 25 <i>ns</i>	
Counter	samples of the		
	frame	Note: It can be different of the A-scan	
	11 dillic	§ A-scan counter function	
(CD22 (42) 1 22	Program the	In#1: 0=Dac OFF / 1=Dac ON	
"Dac", ""dac"	DAC curve	Array=courbe DAC en 1/10dB !!!!	
"Vory Foot Ages"	Cot a scens	§ Dac curve function	Armov
"Very Fast Ascan"	Get a-scans	In #1 = Number of samples In #2 = turbo 0=OFF / 1=ON (without	Array
(<4000complex_HE	coming from the	In #2 = turbo 0=OFF / 1=ON (without	Out#1=1 timeout no A-scan
(<4000samples, HF, PRF>2kHz)	12bit analog to digital converter	any timeout)	
"Start Sampling"	Ask a sampling		
"Wait Sampling"	Wait the end of		Code: 0=in process /
man bamping	sampling		1=finished
"Read Samples"	Read samples	In #1 = Number of samples	1—IIIIBIICG
read bumples	Teau sumpies	III "I - I willow of buildings	

5 DAC CURVE FUNCTION

The USBoxS DAC curve is 166µs depth. It programmable by 256 step of 650ns.

To program it, send 256 gain values (1/10dB) through "Array" and set 1 in "In#1" Ex: 10.1dB => 101

Take care, if you want to adjust the gain after programming a Dac curve, don't use "Gain" function but reprogram a new Dac curve with an offset.

Using "Gain" function while a Dac curve will set it off!

Over the 166µs, the gain of "Array[0]" is reprogrammed.

The 1^{st} point of the curve, "Array[0]", correspond to the emission or interface echo if you are working with "echo-start" (Original sync).

In this last case, "Array[0]" is the gain during the water path (between emission to interface echo)

<u>Menu</u>

6 ATTENTION

- □ **Code** is 1 only if the string (function) is recognized. It's not an error code concerning a good processing
- □ **Array** is an array declared as Unsigned Integer (uInt16) and **Len** its size. Before calling a function, you must declare **Array** with a good size. For example if you want to read an A-scan of 1000 samples, you must declare **Array[1000]** and **Len=1000**.
- □ Array is an array declared as Unsigned Integer(uInt16) however "A-scan" return integer (uInt16) and "A-scan counter" return unsigned short integer (uInt8) codded on uInt16. It's always unsigned. As the pointer is always on uInt16 you must cast differently Array following functions
- □ "Init usb" If you use only one USBoxS, you must call "Init usb" with ChannelNumber=0. If you use 2 USBoxS, you must call one time "Init usb" with ChannelNumber=0 AND one time with ChannelNumber=1. 1st channel is the USB2 plug connected
- □ "Filter/Mode" set automatically the sampling frequency to 80 MHz
- □ "SamplingFreq/Mode" set automatically filter to Broadband (No filter)
- □ "Load configuration" program completely 1,2,3,4... USBoxS based on default parameters files $c:\saphirp\ustcad\(1,2,3,4...)V$
 - In#1=2 \rightarrow USBoxS 0 is initialised with default parameters c:\saphirp\ustcad\1V
 - \rightarrow USBoxS 0 is initialised with default DAC curve c:\saphirp\ustcad\1D
 - \rightarrow USBoxS 1 is initialised with default parameters c:\saphirp\ustcad\2V
 - \rightarrow USBoxS 1 is initialised with default DAC curve c:\saphirp\ustcad\2D

These files are managed by US_Key.EXE

